Potapenko Glass & Filters

INF'2006

Mar 7.2006

GOST'S RADIATION-STABLE GLASS

Dear Mr/Ms.

This paper do present the data on Gost's radiation stable glass in Ukrainian Optical Glass Factory. There is Gost's specification in russian/english text.

ГОСТ 13659-78 Стр. 27

4. РАДИАЦИОННО-ОПТИЧЕСКАЯ УСТОЙЧИВОСТЬ

4.1. Радиационно-оптическая устойчивость оптических стекол, карактеризуемая приращением оптической плотности ΔD в видимой области спектра образца толщиной 1 см в результате облучения от источника 60 Со дозой $1\cdot 10^5$ и $5\cdot 10^5$ Р при средней мощности дозы 10400 Р/ч, указана в табл. 11.

Таблица 11.

Марка стекла	ΔD, cm ⁻¹			Δ D, cm ⁻¹	
	1 • 105	5 - 10 ⁵ P	Марка стекла	1 • 10 ⁵ P	5 • 105 P
ЛКЗ ЛК4 ЛК6 ЛК7 ФК14 К8 К14 К19 БК4 БК6 БК8 БК10 БК13 ТК2 ТК4 ТК8 ТК12 ТК4 ТК8 ТК12 ТК13 ТК14 ТК16 ТК17 ТК20 ТК21 ТК23 СТК3 СТК7 СТК9 СТК12 СТК19 КФ4 КФ6	0,120 0,130 0,100 0,100 0,500 0,260 0,285 0,400 0,435 0,295 0,315 0,250 0,200 0,265 0,255 0,300 0,265 0,255 0,300 0,290 0,425 0,300 0,290 0,425 0,300 0,290 0,425 0,300 0,290 0,425 0,300 0,290 0,425 0,300 0,255 0,300 0,255 0,300 0,255 0,300 0,255 0,300 0,255 0,300 0,255 0,300 0,255 0,300 0,255 0,300 0,255 0,360 0,345 0,430 0,250 0,180 0,180	0,400 0,455 0,300 0,350 1,100 0,920 0,077 0,920 1,160 1,240 0,810 0,705 0,615 0,460 0,530 0,180 0,810 0,810 0,950 0,750 1,175 0,950 0,750 1,175 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,575 0,950 0,460 0,530 0,530 0,530 0,460 0,530 0,530 0,530 0,460 0,530 0,530 0,750 0,575 0,950 0,575 0,950 0,950 0,950 0,950 0,575 0,950 0,950 0,950 0,950 0,950 0,950 0,950 0,575 0,950 0,960	БФ1 БФ6 БФ7 БФ8 БФ11 БФ12 БФ13 БФ24 БФ25 БФ28 ТБФ4 ЛФ5 ЛФ9 ЛФ1 Ф1 Ф4 Ф6 Ф9 Ф13 ТФ1 ТФ2 ТФ3 ТФ4 ТФ5 ТФ7 ТФ7 ТФ8 ТФ1 ОФ1	0,200 0,360 0,375 0,430 0,300 0,495 0,485 0,480 0,460 0,570 0,300 0,500 0,120 0,080 0,600 0,700 0,530 0,530 0,550 0,500 0,510 0,510 0,750 0,460 0,455 0,490 0,490	0,510 0,865 0,860 0,950 0,640 1,090 1,045 0,940 0,828 0,765 0,950 1,370 0,530 1,050 0,350 0,200 1,120 1,170 1,180 0,705 1,060 0,9705 1,065 1,080 0,950 1,085 0,930 0,725 0,930 0,725 0,930 0,725 0,930 0,650 0,380 1,280
×		ž. =		N. C. C. F.	

2.2. Коэффициент перевода единиц измерения дозы и мощности дозы в другие единицы:

 $1P = 2,5798 \cdot 10^{-4}$ Kπ/κΓ; $1 P/q = 7,17 \cdot 10^{-8}$ A/κΓ.

Potapenko Glass & Filters

4.3 По радиационно-оптической устойчивости, характеризуемой изменением оптической плотности ΔD после облучения гамма-лучами, стекло серии 100 должно соответствовать требованиям, указанным в таблице 3

TOCT 3514-94

Таблица 3

Марка стекла	ΔD, не более	Марка стекла	Δ <i>D</i> , не более	Марка стекла	ΔD, . не более
ЛК103	0,040	TK116	0,025	БФ125	0,050
ЛК105	0,050	TK120	0,020	ЛФ105	0,110
ЛК107	0,015	TK121	0,065	ЛФПП	0,080
K102	0,035	TK123	0,025	ТБФ101	0,013
K108	0,015	TK125	0,025	Ф101	0.070
K100	0,030	TK134	0,015	Ф102	0,070
K110	0.020	CTK103	0,015	Ф104	0.070
K114	0.045	CTK112	0,020	Ф106	0,055
K119	0,025	CTK119	0,030	.Ф108	0,070
6K104	0,015	КФ104	0,060	Ф109	0,045
6K106	0,015	БФ101	0,050	Ф113	0,070
BK108	0,020	БФ104	0,035	ТФ101	0,080
6K110	0,040	БФ106	0,090	ТФ102	0,080
6K114	0,050	БФ107	0,070	ТФ103	0,040
TK102	0,025	БФ108	0,040	ТФ104	0,045
TK104	0,025	БФ111	0,060	ТФ105	0,040
TK108	0,025	БФ112	0,045	ТФ107	0,025
TKI12	0,025	БФ113	0,200	TФ108	0,080
TK113	0,025	БФ121	0,120	ТФ110	0,040
TK114	0,025	БФ123	0,025	ОФ101	0,050

11 200

6.7 Изменение оптической плотности ΔD определяют для стекла толщиной 1 см после облучения образца стекла от источника гамманизлучения радионуклида кобальта-60 дозой $(1,0\pm0,1)\cdot 105$ Р при средней мощности дозы (1400 ± 300) Р/ч по нормативным документам 1). Толщина облучаемого образца 2 см. Облучение проводят при температуре (20 ± 5) °C. Оптическую плотность измеряют при помощи фотометра по ГОСТ 3520 спустя $(2,0\pm0,5)$ ч после облучения; в течение этого времени образец хранят в темноте при температуре не выше 25 °C.

6.7.1 Допускается в условиях производства определять радиационно-оптическую устойчивость стекол серии 100 при помощи рентгеновской установки в соответствии с нормативными документами²) путем измерения коэффициента пропускания или оптической плотности по ГОСТ 3520 образца стекла толщиной I см в видимой области спектра при заданном режиме работы установки. Измерение следует проводить через 1,5 ч после облучения при температуре (20 ± 3) °С. Изменение оптической плотности ΔD_1 стекла серии 100 после облучения рентгеновскими лучами должно соответствовать значениям, указанным в таблице Ξ

Таблица 8

Марка стекля	Δ <i>D</i> 1,	Марка стекля	ΔD_1 , He Gonee	Марка стекла	AD1,
ЛК103	0,040	TKII6	0,025	БФ125	0,070
ЛК105	0,050	TK120	0,025	ЛФ105	0.110
ЛК107	0,030	TK121	0,055	ЛФП	0,150
K102	0,035	TK123	0,030	Ф101	0,100
K108	0,025	TK125	0,030	Ф102	0,080
K100	0,030	TK134	0,020	Ф104	0,080
KI10	0,030	CTK103	0,020	Ф106	0,080
K114	0,035	CTK112	0,020	Ф108	0,070
K119	0,025	CTK119	0,030	Ф109	0,070
БК104	0,025	КФ104	0,060	Ф113	0,080
БК 106	0,025	БФ101	0,075	ТФ101	0,080
БК108	0,025	БФ104	0,065	ТФ102	0,080
6K110	0,065	БФ106	0,090	ТФ103	0,040
TK102	0,035	БФ107	0,100	ТФ104	0,040
TK104	0,025	БФ108	0,080	ТФ105	0,040
TK108	0,025	БФПП	0,070	ТФ107	0.035
TK112	0,025	БФ112	0,070	ТФ108	0,050
TK113	0,030	БФПЗ	0.150	ТФ110	0.040
TK114	0,025	БФ121	0,100	ОФ101	0.060

Gost's specification at test, as follows:

- Thickness: 1 and 2cm
- Illumination: gamma-rays radiation of radionuclide cobalt-60
- Power: 10⁵ and 5x10⁵ R-unit
- Dose: 10400 R-unit per hour, R/h
- Time: in 1,5 and 2 hours after illumination
- Temperature: 20 degree Celsius
- Width-band: VISual spectrum
- Test data: deviation of optical density is average delta-OD per VISual spectrum at thickness 1cm
- Standard data: presented in Tab. 3, 8 and 11

There is standard optical quality (abbrev. ST). We certifies origin and optical quality of delivered glass in Ukrainian Optical Glass Factory and We send You the standard test-report and the glass data sheet to delivered glass by purchase order

Additional Test

The standard test report corresponds to Standardized (ST) test certificate. Extra properties of the delivery lot requested by the purchaser will be certified with additional test certificates. Other test certificates according Increased or Extra Standard (SE), Precision (PZ) and Super precision (SPZ) test certificates must be ordered.

Thanks.